Acyl coenzyme A synthetase from Pseudomonas fragi catalyzes the synthesis of adenosine 5'-polyphosphates and dinucleoside polyphosphates.

نویسندگان

  • R Fontes
  • M A Sillero
  • A Sillero
چکیده

Acyl coenzyme A (CoA) synthetase (EC 6.2.1.8) from Pseudomonas fragi catalyzes the synthesis of adenosine 5'-tetraphosphate (p4A) and adenosine 5'-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate, respectively. dATP, adenosine-5'-O-[gamma-thiotriphosphate] (ATP gamma S), adenosine(5')tetraphospho(5')adenosine (Ap4A), and adenosine(5')pentaphospho(5')adenosine (Ap5A) are also substrates of the reaction yielding p4(d)A in the presence of tripolyphosphate (P3). UTP, CTP, and AMP are not substrates of the reaction. The K(m) values for ATP and P3 are 0.015 and 1.3 mM, respectively. Maximum velocity was obtained in the presence of MgCl2 or CoCl2 equimolecular with the sum of ATP and P3. The relative rates of synthesis of p4A with divalent cations were Mg = Co > Mn = Zn >> Ca. In the pH range used, maximum and minimum activities were measured at pH values of 5.5 and 8.2, respectively; the opposite was observed for the synthesis of palmitoyl-CoA, with maximum activity in the alkaline range. The relative rates of synthesis of palmitoyl-CoA and p4A are around 10 (at pH 5.5) and around 200 (at pH 8.2). The synthesis of p4A is inhibited by CoA, and the inhibitory effect of CoA can be counteracted by fatty acids. To a lesser extent, the enzyme catalyzes the synthesis also of Ap4A (from ATP), Ap5A (from p4A), and adenosine(5')tetraphospho(5')nucleoside (Ap4N) from adequate adenylyl donors (ATP, ATP gamma S, or octanoyl-AMP) and adequate adenylyl acceptors (nucleoside triphosphates).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase and several ligases.

The findings presented here originally arose from the suggestion that the synthesis of dinucleoside polyphosphates (Np(n)N) may be a general process involving enzyme ligases catalyzing the transfer of a nucleotidyl moiety via nucleotidyl-containing intermediates, with release of pyrophosphate. Within this context, the characteristics of the following enzymes are presented. Firefly luciferase (E...

متن کامل

4-Coumarate:coenzyme A ligase has the catalytic capacity to synthesize and reuse various (di)adenosine polyphosphates.

4-Coumarate:coenzyme A ligase (4CL) is known to activate cinnamic acid derivatives to their corresponding coenzyme A esters. As a new type of 4CL-catalyzed reaction, we observed the synthesis of various mono- and diadenosine polyphosphates. Both the native 4CL2 isoform from Arabidopsis (At4CL2 wild type) and the At4CL2 gain of function mutant M293P/K320L, which exhibits the capacity to use a br...

متن کامل

T4 RNA ligase catalyzes the synthesis of dinucleoside polyphosphates.

T4 RNA ligase has been shown to synthesize nucleoside and dinucleoside 5'-polyphosphates by displacement of the AMP from the E-AMP complex with polyphosphates and nucleoside diphosphates and triphosphates. Displacement of the AMP by tripolyphosphate (P3) was concentration dependent, as measured by SDS/PAGE. When the enzyme was incubated in the presence of 0.02 mm [alpha-32P] ATP, synthesis of l...

متن کامل

Specific synthesis of adenosine(5')tetraphospho(5')nucleoside and adenosine(5')oligophospho(5')adenosine (n > 4) catalyzed by firefly luciferase.

Luciferase catalyzes the preferential synthesis of adenosine(5')tetraphospho(5')nucleoside (Ap4N) in the presence of luciferin (LH2), adenosine 5'-[gamma-thio]triphosphate (ATP[gamma S]) and NTP (other than ATP), with very low, or undetectable synthesis of Ap4A or Np4N, because ATP[gamma S] is a good adenylyl donor for the formation of the E-LH2-AMP complex, but a poor adenylyl acceptor from th...

متن کامل

Dinucleoside polyphosphates stimulate the primer independent synthesis of poly(A) catalyzed by yeast poly(A) polymerase.

Novel properties of the primer independent synthesis of poly(A), catalyzed by the yeast poly(A) polymerase are presented. The commercial enzyme from yeast, in contrast to the enzyme from Escherichia coli, is unable to adenylate the 3'-OH end of nucleosides, nucleotides or dinucleoside polyphosphates (NpnN). In the presence of 0.05 mm ATP, dinucleotides (at 0.01 mm) activated the enzyme velocity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 180 12  شماره 

صفحات  -

تاریخ انتشار 1998